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ABSTRACT

To handle long sequential data, we propose Butterflyer, an ef-
ficient Transformer-based model. Butterflyer employs an in-
novative Butterfly-Attention mechanism with Butterfly ma-
trices to enhance interaction pattern capture and reduce com-
putation costs, as these Butterfly matrices preserve orthogo-
nality or unitarity and have a sparse structure. We evaluate
Butterflyer on the Long Range Arena (LRA) benchmark and
find it outperforms state-of-the-art models in various tasks.

1. INTRODUCTION
Handling long sequential data is a significant challenge in
AI, particularly for tasks like text and image classification.
Attention mechanisms, such as those in the Transformer
model [27], have transformed computer vision and NLP,
but their quadratic complexity limits scalability for long se-
quences. Solutions like Linformer [29], Reformer [9], and
Longformer [2] reduce complexity or combine local and
global attention. However, further optimization is needed for
real-time processing and extremely long sequences.

Studies have looked into improving Transformers by us-
ing low-rank and sparse factorization to handle data more
efficiently. Paramixer [32] changes self-attention by remov-
ing dot products and softmax for added flexibility. The but-
terfly matrix, used in FFT, helps with performance through
a structured approach [5]. Sapkota et al. [21] propose using
the butterfly matrix in neural networks for better optimiza-
tion of long sequences. However, combining these methods
into one model could offer even greater benefits.

This paper presents Butterflyer, a model designed for
efficiently handling long sequential data in LRA bench-
mark. Butterflyer enhances performance by employing But-
terfly Matrices and novel attention mechanisms. Inspired by
Paramixer [32], it replaces traditional softmax with Butterfly
Matrices to handle high-rank attention efficiently. An MLP
enhances the data. Although Butterflyer is very accurate, it
may be slightly slower than Paramixer due to extra layer nor-
malization.

In summary, the contributions of this research are:

• Developed Butterflyer for effective processing of long se-
quential data across various tasks.
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• Integrated Butterfly Matrices into the attention mecha-
nism for improved stability and accuracy.

• Implemented advanced preprocessing techniques to en-
sure high-quality data for accurate classification.

• Demonstrated that Butterflyer outperforms state-of-the-
art models in LRA.

Inspired by Paramixer [32], which rethinks self-attention
as a transformation block, eliminating dot-product and soft-
max operations for enhanced efficiency and flexibility, But-
terflyer replaces traditional softmax in scaled dot-product
attention with Butterfly Matrices. This approach maintains
computational efficiency while capturing high-rank atten-
tion requirements. The preprocessed data is passed through
a multilayer perceptron (MLP) to mix the input tensor
columns, enhancing data representation. The main chal-
lenges are multi-task handling, efficient feature extraction ,
generalization and prevent from overfitting. Despite its supe-
rior accuracy, Butterflyer exhibits a little bit of slower pro-
cessing speeds compared to Paramixer, possibly due to its
additional layer normalization.

2. RELATED WORK

2.1 Attention mechanisms

Integrating attention mechanisms into neural networks has
significantly advanced fields like computer vision and natu-
ral language processing (NLP). Xu et al. [31] introduce an
attention-based model for image captioning, subsequently
extending it to object detection and image generation. Wang
et al. [28] develop an attention-based residual network for
fine-grained image recognition, excelling at identifying sub-
tle differences. Li [19] design an attention-based generative
adversarial network (GAN)) for realistic image synthesis.
In NLP, Bahdanau et al. [1] pioneer attention mechanisms
for machine translation, setting a standard for sequence-to-
sequence tasks. Luong et al. [14] enhance translation with
global and local attention. Vaswani et al. [27] revolution-
ize NLP with the Transformer model’s self-attention mech-
anism. Shen [22] introduce an adaptive attention span for
machine translation and language modeling, achieving state-
of-the-art results.



2.2 Matrix Decomposition and Sparse
Factorization
Self-attention mechanisms use matrix factorization to break
down input sequences into weighted combinations. Tradi-
tional low-rank matrix decomposition methods, like Singu-
lar Value Decomposition (SVD), decompose matrices into
simpler, low-rank forms. SVD is often used in recommenda-
tion systems [10] to model user-item interactions. Nyström
decomposition [30] reduces complexity in large-scale ma-
trix operations, while CUR decomposition [16] creates
low-rank approximations by selecting specific rows and
columns, aiding dimensionality reduction. Advances like the
Butterfly Transform (BFT) [26] and Butterfly MLP [21] en-
hance CNN efficiency and matrix operations.

Sparse factorization methods use sparse matrices with
fewer non-zero elements for more efficient approximations.
Non-negative Matrix Factorization (NMF) [11] is widely
used in fields like bioinformatics and text mining. Chord
Sparse Factorization [23] specifies non-zero positions using
a modified Chord protocol, optimizing the matrix through
non-parametric minimization. Parametric Sparse Factoriza-
tion Attention [8] improves sparse matrices using the Adam
algorithm.

3. PRELIMINARY
3.1 Transformer
Transformers use self-attention mechanisms, a key element
in neural network architectures [27]. The Feed-Forward
Network (FFN) is essential for processing features at each
position within the Transformer model. Self-attention allows
elements in a sequence to interact fully, crucial for comput-
ing representations, as shown in Equation 1.

Attention(Q,K, V ) = AV, (1)

where

A = softmax
(
QKT

√
D

)
, (2)

In this context, Q, K, and V represent the Query, Key,
and Value matrices derived from the input sequence through
linear transformations. The attention matrix A is calculated
using the scaled dot product of Q and K. The Key dimen-
sionality D scales the dot product, and the softmax function
normalizes these values, applying weights to the Value ma-
trices to compute the final weighted sum.

3.2 Sparse Attention with Paramixer
Paramixer reimagines self-attention in Transformers by
eliminating dot-product and softmax, reducing computa-
tional bottlenecks and increasing flexibility [32]. It uses an
MLP to mix tensor columns, efficiently capturing complex
relationships. Stacked Paramixer blocks form ParamixerNet,
which adapts to tasks using back-propagation and optimiza-
tion algorithms like Adam. This approach improves perfor-
mance and generalization in various NLP [15] and machine
learning tasks [17].

Figure 1: The Butterfly Matrix construction process. The red
dots indicate non-zero elements.

3.3 Butterfly Matrix
The Butterfly Matrix, or Butterfly Factorization, is a struc-
tured matrix used in numerical analysis and signal process-
ing, especially in FFT algorithms [5]. Its diagonal block de-
sign simplifies large linear transformations into smaller op-
erations, leveraging data sparsity to reduce computational
complexity. This enhances performance in tasks like spectral
analysis, image processing, and data compression, as shown
in Figure 1 [18].

The construction of a Butterfly Matrix typically involves
the following steps:

1. Initialization: We start by initializing the Butterfly Ma-
trix as an N ×N identity matrix.

2. Transformation Stage: The matrix undergoes log2(N)
rounds of transformation. At each round s, the matrix is
divided into 2s blocks.

3. Butterfly Operations: Within each block, elements are
mixed using specific patterns involving additions and
multiplications, aiming to efficiently combine data and
capture complex interactions.

Butterfly Matrices have been widely used in linear models
but limited in nonlinear settings. Sapkota et al. [21] intro-
duced the Non-Linear Butterfly Mixer, which integrates But-
terfly Matrices into nonlinear operations, like MLPs and at-
tention mechanisms. This approach enhances computational
efficiency and parameter optimization, improving model
performance in deep learning and expanding neural network
design possibilities.

4. DESIGN
4.1 Problem Statement
Our goal is to develop a system that accurately classi-
fies long sequential data (over 512 time steps) across di-
verse tasks. The system processes tokenized numerical ar-
rays from various data types: images Ximg converted into
pixel sequences, text Xtext into word or subword tokens,



pathfinder data Xpath into coordinate sequences, and math-
ematical operations Xmath into symbol sequences. The
model extracts features, performs matrix operations, and ap-
plies classification techniques to ensure accurate results and
good generalization across different data types.

4.2 Research Challenges
We plan to use advanced neural network architectures for
our solution, but these face challenges when handling di-
verse tasks. Here are several considerations we have taken
into account:

• Multi-Task Handling: The tasks in question are diverse,
including but not limited to:

1. Text Classification: Categorizing text documents
based on content or context.

2. Image Classification: Assigning images to predefined
classes based on visual content.

3. Pathfinder: Identifying paths between highlighted
points in synthetic images.

4. Mathematical Operations Analysis: Parsing and eval-
uating hierarchical sequences of mathematical opera-
tions.

5. Document Retrieval: Evaluating a model’s ability to
encode and compare compressed representations of
documents to determine similarity. This involves bi-
nary classification to identify citation links between
documents.

Each task requires specific adjustments to the neural net-
work architecture to handle different sequence lengths
and types, ensuring optimal performance across all tasks.

• Efficient Feature Extraction: Model performance
hinges on extracting relevant features from input data.
Traditional attention mechanisms may miss task-specific
features. Enhancing feature extraction involves adjusting
attention patterns or adding task-specific attention heads.

• Generalization and Overfitting: A key challenge is to
ensure the model generalizes well across all tasks without
overfitting any specific one.

Overcoming these challenges requires deep research into
neural network architectures and innovative enhancements.
Developing a model that efficiently handles multiple tasks
while efficiently extracting task-specific features will ad-
vance in this field.

4.3 Proposed System Architecture
The proposed system architecture is shown in Figure 2. We
preprocess input data types, such as images and text, con-
verting them into numerical arrays. The data then undergoes
Layer Normalization and Butterfly-Attention to extract rel-
evant features. Each component will be detailed in the fol-
lowing sections.

• Text Tokenization: We create a list of unique characters
from the input text, assign a token to each, and tokenize
the text for further processing.

Figure 2: System Architecture

• Image Transformation: We convert each image to ten-
sors, then use the squeeze operation to remove unneces-
sary dimensions and flatten them for model input.

• Pathfinder Data Representation:
We convert the data into tensors, load the images, and
create a pixel-to-index mapping. Each image is trans-
formed into a sequence of pixel values, with target labels
extracted. These preprocessed images and labels are used
for subsequent model training and evaluation.

• Mathematical Operations Encoding: We read the se-
quences of the mathematical formula text, replace paren-
theses, and split the strings to extract tokens. A token-to-
index mapping is created, and sequences are converted to
index sequences with target labels extracted.

• Document Retrieval Data Processing: Document re-
trieval tasks involve two document sets: those to be re-
trieved and reference documents. We create a character
dictionary, convert each document’s text into integer se-
quences, concatenate sequences from both sets, and save
the processed data for further use.

After the procedure, we apply padding and truncation to
ensure uniform sequence lengths, typically 256, 512, or up
to 4K. This standardization is essential for batch processing
during model training, enabling effective feature extraction
and classification.

The Butterflyer model processes various input types, such
as images and text, as shown in Figure 2. We start by ap-
plying embedding and positional encoding to capture se-
quence information and dependencies. Layer normalization
then stabilizes and speeds up training by ensuring uniform
data scales, reducing overfitting, and addressing internal co-
variate shift. Inspired by Paramixer [32], we replace tradi-
tional softmax with the product of square matrices for scaled
dot-product attention. Our Butterfly-Attention uses Butterfly
Matrices [5] to apply efficient patterns and capture complex
data relationships.

The preprocessed data is passed through an MLP g :
Rd → Rd with weights ζ, mixing the input tensor columns



Figure 3: The Butterfly Attention architecture.

to create matrix V , enhancing feature representation. Next,
we use butterfly decomposition to build butterfly matrices.
Starting with an N ×N identity matrix I and initializing B
as I , we generate matrices W (i) through log2(N) stages.
Each stage captures different patterns, efficiently learning
complex relationships, as shown in Figure 3.

The matrix V from the MLP is multiplied by the Butter-
fly Matrices W (i), enhancing data representation by com-
bining the MLP’s power with Butterfly Matrices’ transfor-
mations.The processed data is then passed to a task-specific
output layer, producing probabilities or predictions for clas-
sification, regression, or other objectives.

We use the Sophia optimizer [13], a gradient descent algo-
rithm that dynamically adjusts learning rates for faster con-
vergence and better performance, especially for large-scale
neural networks.

Overall, Butterflyer leverages effective embedding, nor-
malization, Butterfly-Attention, and the Sophia optimizer
to deliver high-performance results for various predictive
tasks.

5. EXPERMENT
This section evaluates Butterflyer against other state-of-the-
art models [32, 12, 6]. We aim to show Butterflyer’s effec-
tiveness in capturing long sequence patterns and its superior
performance across various tasks.

5.1 Experimental Environment
The experimental environment includes both hardware and
software settings. The hardware setup consisted of an In-
tel Xeon Gold 6154 CPU @ 3.00GHz, a Tesla V100-SXM2
GPU, 60GB of RAM, and 30GB of shared memory. The
software environment used a Linux distribution with kernel
version 3.10.0-1127.el7.x86 64, Pytorch 12.1, and CUDA
12.3.

5.2 Dataset Information
We evaluated the Butterflyer model using the Long Range
Arena (LRA) benchmark, designed to test how well efficient
Transformer models manage long sequential data across var-
ious tasks.

• Text Classification: This task uses IMDb [15] reviews
to test the model’s ability to classify lengthy documents,
focusing on sequences up to 4K characters and handling
complex and unsegmented data.

• Image Classification: The CIFAR-10 dataset assesses
the model’s ability to 2D learn spatial relationships be-
tween pixels represented in a 1D sequence.

• Pathfinder: This task evaluates whether the model can
determine if two points in a 32 × 32 image, treated as a
1024-length pixel sequence, are connected by a path.

• ListOps (Hierarchical Data Parsing): This task tests
the model’s ability to reason over hierarchical sequences,
using operators like MAX, MEAN, and SUM MOD,
within sequences up to 2K in length. For example, the se-
quence [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1
5 8 9 2]] yields an output of 5. The model must pre-
dict one of ten output classes by understanding the hier-
archical structure and operators in the input sequences.

• Document Retrieval: This task uses the ACL Anthol-
ogy Network (AAN) dataset to test the model’s ability
to encode and compare compressed document represen-
tations, identifying citation links between papers. Each
document is represented as a 4K byte/character sequence,
making each comparison 8K in length.

5.3 Experimental Results and Analysis
Table 1 shows that Butterflyer performs strongly in LRA
benchmark, particularly in text and image classification. Al-
though Paramixer scored slightly higher in ListOps (39.71),
Butterflyer was close with (39.51 ± 0.38), handling its ca-
pability in handling complex data. Butterflyer achieved the
highest score in the retrieval task, proving its efficiency.
While it performed slightly lower in the Pathfinder task,
within 3% of the top score, it still outperformed other mod-
els like Paramixer and FNet in many areas. Butterflyer is
effective for various tasks, making it a versatile choice for
natural language processing, computer vision, and beyond.

Both models use sparse factorization to enhance effi-
ciency. Paramixer optimizes non-zero positions in factor ma-
trices, while Butterflyer employs a hierarchical butterfly ma-
trix pattern, common in Fast Fourier Transform algorithms.
Butterflyer’s method yields higher accuracy but increases
processing time for larger inputs.

Table 2 compares the average epoch time for Butter-
flyer and Paramixer on the LRA dataset. Butterflyer, while
achieving higher accuracy, is slower than Paramixer, likely
due to additional layer normalization. The speed difference
is minor for most tasks but more noticeable in the retrieval
task with larger input sizes (8K), suggesting that Butterflyer
might need further optimization for large inputs.

5.4 Ablation Studies
This section analyzes the effect of Layer Normalization
(LN) on the Butterflyer model. LN helps stabilize training
and improves convergence. Testing with the LRA bench-
mark, results in Table 3 show that the butterfly matrix signif-
icantly enhances performance, especially in complex tasks
like text classification and retrieval. While LN further im-
proves accuracy and consistency, Butterflyer is still highly
effective without it, particularly in image classification. This
underscores the butterfly matrix’s power and the added ben-
efits of LN.



Table 1: The best result is in bold and the second best is underlined.

Model ListOps Text Retrieval Image Pathfinder Avg
Vanilla Transformer [27] 36.37 64.27 57.46 42.44 71.40 54.39
Sparse Transformer [3] 17.07 63.58 59.59 44.24 71.71 51.24
Reformer [9] 37.27 56.10 53.40 38.07 68.50 50.67
Longformer [2] 35.63 62.85 56.89 42.22 69.71 53.46
Linformer [29] 35.70 53.94 52.27 38.56 76.34 51.36
BigBird [33] 36.05 64.02 59.29 40.83 74.87 55.01
Linear Transformer [7] 16.13 65.90 53.09 42.34 75.30 50.55
Sinkhorn Transformerr [25] 33.67 61.20 53.83 41.23 67.45 51.29
Performerr [4] 18.01 65.40 53.82 42.77 77.05 51.41
Synthesizer [24] 36.99 61.68 54.67 41.61 69.45 52.88
cosFormerr [20] 37.90 63.41 61.36 43.17 70.33 55.23
Flowformer [6] 38.70 64.29 62.24 43.20 73.95 56.48
FNet [12] 35.33 65.11 59.61 38.67 77.80 55.30
Paramixer [32] 39.71 78.87 52.12 44.68 79.16 58.91

Butterflyer 39.51 ± 0.38 81.71 ± 0.36 68.37 ± 0.44 48.84 ± 1.31 76.79 ± 0.67 63.04

Table 2: Processing Times per Epoch for Each Task (in sec-
onds)

Task Paramixer Butterflyer
Image 52s 70s
Text 205s 223s
Pathfinder 1139s 1170s
ListOps 1269s 1307s
Retrieval 923s 1704s

6. CONCLUSION
This paper introduces Butterflyer, a model designed to effi-
ciently process long sequential data across various tasks like
text and image classification, pathfinding, mathematical op-
erations, and document retrieval. Butterflyer uses Butterfly
Matrices and novel attention mechanisms to overcome lim-
itations of traditional self-attention, and employs layer nor-
malization and the Sophia optimizer to enhance training ef-
ficiency. Experimental results show that Butterflyer outper-
forms state-of-the-art models in accuracy but has slower pro-
cessing speeds, particularly in tasks with large input sizes.
Like many Transformer variants, Butterflyer struggles with
long sequences. For instance, most transformer-like models
do not succeed in the Pathfinder-X task in the LRA. Future
work could focus on optimizing processing speed, improv-
ing spatial dependency handling, and exploring broader ap-
plications.
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